If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+3c^2-81c-243=0
We add all the numbers together, and all the variables
4c^2-81c-243=0
a = 4; b = -81; c = -243;
Δ = b2-4ac
Δ = -812-4·4·(-243)
Δ = 10449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10449}=\sqrt{81*129}=\sqrt{81}*\sqrt{129}=9\sqrt{129}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-9\sqrt{129}}{2*4}=\frac{81-9\sqrt{129}}{8} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+9\sqrt{129}}{2*4}=\frac{81+9\sqrt{129}}{8} $
| -18=m-2 | | -12x+17=125 | | -15=-9-x | | 1.8c=32 | | x-2.6=4.6 | | 64=-3x-5 | | A=4(3.14r^2 | | 7w=921 | | 3n=n²+9n-22 | | x/7-12=-10 | | 3n=n²+9n-22=0 | | 3x+(-2)+8=2x | | 16-k=28 | | 6.9−2.8x=30.98 | | -19=n-11 | | 2d+4=10+2.5d2d | | 7(x-2)=2x+5(x-2) | | 18+4x=28 | | x1=-1x2=5 | | 1/3(3-z)=3 | | 71-n=55 | | 1/3(3−z)=3 | | 6=x/15 | | 5(x-3)=-4x+12 | | 6=3v+2v | | x1=1x2=6 | | x+$9=$21 | | 6m+14=2m+6 | | 3l=210 | | v/(-8)-6=8 | | x1=-1x2=2 | | 7(c−14)=−7 |